当前位置: CNMO >互联网>互联网新闻>互联网消息 >正文

谷歌开源图像分割模型 于Cloud TPU上实现艺术级表现

CNMO 【原创】 作者:陈祥凯 2019-04-25 16:40
评论(0
分享

  【CNMO新闻】谷歌从去年开始向谷歌云平台用户提供订制的张量处理器(TPU)芯片,该芯片被专门设计用于执行AI推断、自然语言处理、图像识别和增强学习等任务。为了向运行在该芯片上的程序提供支持,谷歌逐步开源了语言模型BERT、MorphNet架构以及UIS-RNN架构等,周三,这家科技巨头进一步开源了两种图像分割模型,这两种模型在Cloud TPU上均实现了艺术级的表现。

谷歌
谷歌

  这两款模型——Mask R-CNN和DeepLab v3+,能够自动分类图像中的区域并且支持两种图像分割方法:第一种为个体分割,它能为图像中的每个个体划分类别,另一种为语义分割,也就是根据图像中物体的类别或者物体的外表标注图像中的每个像素。

  谷歌解释称,Mask R-CNN是一种能够一次定位多个物体的二阶段个体分割系统,第一阶段系统从图像中提取图形用以识别可能的分割区域,第二阶段系统改进上阶段的结果并预测物体类别。

  另一方面,DeepLab v3+注重分割速度,它在TPU硬件上依靠开源PASCAL VOC 2012图像数据库和谷歌TensorFlow 机器学习架构训练而成,整个训练过程耗时不超过5个小时。

  谷歌并不是唯一推出此类工具的公司,三月份微软开源了用于加快机器学习运行的FPGA,而亚马逊也向客户提供了自己的FPGA硬件并且正在开发一款加速Alexa模型训练的AI芯片。

分享:
网友评论 0条评论
用其他账号登录:
请稍后,数据加载中...
查看全部0条评论 >
为你精选
请稍后,数据加载中...
点击加载更多
火热围观
潮机范儿
热门搜索词

Copyright © 2007 - 北京沃德斯玛特网络科技有限责任公司.All rights reserved 发邮件给我们
京ICP证-070681号 京ICP备09081256号 京公网安备 11010502036320号 京网文[2012]0132-048号